

Temperature and Humidity Controller

MANUAL

J-Thermo No. 9, Chen Kung St., Tu Chen City, Taipei County 236, Taiwan. Telephone : 886-2-2268-3268 Fax : 886-2-2268-4021 www.accutherm.com.tw

Notice

Contents

This user guide is protected by copyright and has all the rights related to it. Without prior authorization from J-Thermo , this guide and any parts contained in this guide cannot be reproduced, copied, or translated in another language.

Contents of this guide will be provided in this form and can be edited or changed without prior noticed.

This guide includes implied guarantee or suitability for a certain purpose, and it does not offer any guarantee for those that do not limit this matter.

Every programs contained in this product is protected by copyright. Without prior authorization from

J-Thermo, this product and any parts contained in this product cannot be reproduced, copied, or translated in another language.

Every title, symbols, figures, service marks, and etc in this guide or the product are legally registered.

J-Thermo

No. 9, Chen Kung St., Tu Chen City, Taipei County 236, Taiwan. Telephone : 886-2-2268-3268 Fax : 886-2-2268-4021 www.accutherm.com.tw

1. BEFORE STARTING	1.1 SAFETY INFORMATION
2. INSTALLATION INSTRUCTION	2.1 INSTALLATION PLACE AND CAUTION NOTICE
	2.2 INSTALLATION METHOD
	2.3 SUFFIX CODE
	2.4 DIMENSIONS / PANEL CUTOUT AND TERMINAL ARRANGEMENT
	2.5 CONNECTION METHOD
3. SETTING AND OPERATION	3.1 INITIAL SCREEN
	3.2 BASIC INPUT METHOD
	3.3 NAMES OF EACH PART ON THE OPERATING SCREEN
	3.4 RUNNING OF FIX CONTROL
	3.5 RUNNING OF PROGRAM CONTROL
	3.6 P.I.D AUTO TUNING
	3.7 GRAPH DISPLAY AND SETTING
	3.8 ERROR INDICATION
4. DISPLAY	4.1 OPERATING SCREEN
	4.2 FUNCTION SETTING SCREEN
	4.3 SYSTEM SETTING SCREEN
5. FUNCTION SETTING	5.1 OPERATING METHOD SETTING
	5.2 PROGRAM SETTING
	5.3 DATE/TIME RESERVATION SETTING
	5.4 GRAPH/SAVE SETTING
6. SYSTEM SETTING	6.1 SENSOR TYPE SETTING
	6.2 CONTROL OUTPUT SETTING
	6.3 RETRANSMISSION OUTPUT SETTING
	6.4 INNER SIGNAL AND ALARM SETTING
	6.5 P.I.D SETTING
	6.6 DIGITAL INPUT (D.I) CONFIGURATION SETTING
	6.7 DIGITAL OUTPUT (D.O) CONFIGURATION SETTING
	6.9 OTHER SETTINGS
7. SIMPLE EXAMPLE	7.1 INPUT/OUTPUT SETTING
	7.2 OUTPUT SETTING
	7.3 INNER SIGNAL SETTING
	7.4 FIX CONTROL
	7.5 PROGRAM CONTROL
8. SPECIFICATION	8.1 INPUT
	8.2 OUTPUT
	8.3 POWER SUPPLY
	8.4 OPERATION ENVIRONMENT
	8.5 TRANSPORTATION AND STORAGE CONDITIONS
	8.6 FUNCTION

1 Before starting

Thank you for the purchase of J-Thermo Temperature and Humidity Controller (Model# TH300).

This manual contains the function of product, install method, caution information and the way of using this controller. So please read this manual before using it. And also please make this manual to be delivered to the final user and to be placed where can be found and seen easily

(Contents of this user manual can be edited without prior notice for improvement and modification of the product.)

1.1 Safety information

1.2.1 Safety notice

- For safety and security of the system that is connected to the product, please read and follow this manual carefully.
- We are not responsible for any damages and safety problems due to disregards of the manual or lack of care of the product.
- Please install any extra safety circuitry or other safety materials outside the product for safety of the program that is connected to the product.
- Do not disassemble, repair or reconstruct the product. It can cause electric shock, fire, and errors.
- Do not give impact to products. It can cause of damage or malfunction.

1.2.2 Quality guarantee

- Unless it is included company's conditions for warrantee, we are not responsible for any warranties or guarantees.
- We are not responsible for any damages and indirect loss of the use or third person due to unpredicted natural disasters.

1.2.3 Quality guarantee conditions of product

- The warranty for this product is valid for 1 year from purchase, and we will fix any breakdowns and faults from proper uses as it is mentioned in this manual for free.
- After the warranty period, repair will be charged according to our standard policies.
- Under following conditions, repair will be charged even during warranty period.

5

- Breakdowns due to user's misuses
- Breakdowns due to natural disasters
- Breakdowns due to moving the product after installation.
- Breakdowns due to modification of the product
- Breakdowns due to power troubles
- Please call our customer service for A/S due to breakdowns.

2. Installation Instruction

This is information for installation place and method of TH300 temperature and humidity program controller. So please ready it before installation.

2.1 Installation place and caution notice

2.1.1 Installation place

To avoid electric shock, please use it after installation to panel. Please avoid installing the product for following places where

People can touch terminal unconsciously

Directly exposed to the mechanical vibration or impact.

Exposed to the corrosive gas or combustible gas.

It is exposed to mechanical shock or vibration

Danger of corrosion or combustion of gas exist

Temperature changes too frequently

Temperature is either too high or too low

It is exposed to direct rays

It is exposed to electromagnetic waves too much

Humid place

It has many combustible objects

It has dusts and salinity

2.1.2 Caution

- The case of this controller is chrome-zinc plating and Bezel is made by ABS/PC anti-combustion material but please do not install it to the inflammable place. Especially please do not put it on the inflammable products.
- Please keep it away from the machine or wires that can be cause of noise.
 Especially, please have enough warn-up when you operate it under 10 ; temperature.
- Please install it on horizontally
- When you wire it, please cut out all of electric power.
- This controller is operating in 100 V ~ 240 V a.c, 50 ~ 60 Hz without additional change. If you use other voltage, it may case of fire and electric shock.
- Do not operate controller with wet hand, it may cause of electric shock.

- Please follow Safety Information to prevent any fire, electric shock and any damage.
- Please follow this manual for install and operation of this controller.
- When you put to earth, please refer to install method. But do not it earth to gas pipes, phone lines and lightning rods.
- Please do not turn on power until you install all of parts
- Please do not block ventilating windows. It may cause of break down.
- The grade of over voltage is Catalogue ${\rm I\!I}~$ and using environment is Degree ${\rm I\!I}~$

2.2 Installation method

- (1) Please use 1mm~10mm thickness of a steel sheet for panel.
- (2) Please push TH300 in front of panel.
- (3) Please fixate TH300 by fixing bracket.
- (4) When you fixate TH300 to panel by fixing bracket, please do not tighten it too much. It may cause of break a panel or fixing bracket.

:1

- To prevent electric shock, please check whether power has turned off or not.
 Before turn on power, please use more than third class grounding.
 When electricity transmits, it may cause electric shock so please do not touch terminal.
 - Please wire it after turn off main power
 - Please use around 2A fuse to main electronic power line.

2.3 Suffix Code

Code #	Suffix		Description
	Code		
TH300			Temperature-Humidity Program Controller
Communication	1		RS232
	2		RS485
		1	English and traditional Chinese
Operation language		2	English and Simplified Chinese
		3	English and Korean

2.4 Dimensions/ Panel cutout and Terminal arrangement

2.4.1. TH300 Standard type / Additional type

2.5 Connection method

2.5.1. Power

ℬ Grounding needs more than 2mm² wire and at least the third class grounding connection (Grounding resistance below

2.5.2. Sensor

 Please use input wire with shield. And the shield needs to have 1 point grounding. Please leave a space for Sensor line against power line or grounding line.)
--	---

2.5.3. Temperature roll Humidity control output and retransmissic arrangement.

Temperature-Humidity controller output

Temperature-Humidity retransmission output (4-20mA d.c)

External output arrangement

Relay output

•Relay output

RTD (Resistance Temperature Detector) input (Pt 100 $_{\rm S}\,$)

Direct/Voltage input (0-5V d.c, 4 - 20 mA d.c)

% If you use voltage input, please contact 250 § 0.1% resistance to the input terminal. •Open collector output TH300 separate body has 2 I/O BOARD

Retransmission arrangement

•RS232C arrangement (Base on connector 9 pins)

Contact input & Digital input (D.I)

Please use non-voltage contact as like a Relay.

When you use open collector, the voltage of both of ends should be below 2V and the leakage voltage should be below $100_{\rm S}~$ in ON contact.

• In case of contact input (DI: 1 ~ 8)

• In case of transistor input (DI: 1 ~ 8)

•RS422/RS485 arrangement

TH300 can contact to maximum 32 machines. Please contact Terminating Resistance (100 ~ 200 $_{\rm S}$ 1/4 W) to the both of ends of retransmission lines.

(2 wire connection)

3. Setting and operating

3.1. Initial screen

When the TH300 power is on, the screen for system check will be appear in order of precedence.

3.2. Basic Input Method

Table 1) Button & Input Box

		Function
BUTTON	Name Select button	Users can select this button on their demand. If you press this button, its color will turn into another. By releasing it back, you can select this button operation.
	Active input box (Input available)	Users can enter various set values into this box as they wish. When you press the box, a certain range of numbers or the text input box (Fig.4 to Fig.7) will appear depending on situations. Then, you have only to press the set value.
	Inactive input box (Input unavailable)	This box is inactive under current conditions or situations. However, if you put it under certain conditions or situations, it will turn into the active input box as shown above.

3.2.1. Screen for button input

The Fig. 3 is the basic number input box. You can enter integral numbers or real numbers (Decimal point) there. The title of an entered number and its upper and lower limits will be indicated on the left top of the box. The current input value will be indicated at the indication box over the figure board. The entered number will be entered completely only if you enter the **FNT** key. You can cancel the entered content by pressing the **ESC** key.

(Fig.1) is the basic number input box

PROGRAM

3.2.2. Number / English / Sign Input

Fig. 4 to 7 shows the screen for entering the Number/Korean/English/Sign. This multi-input screen enables you to enter the Number/Korean/English/Sign text respectively by pressing the key in turn. Its shift order is, Number Input Mode i d i Korean Input Mode i d i English Input Mode i d i Sign Input Mode. i -You can return to the; Number Input Mode; by pressing the CHANGE key. The arrangements of Number/Korean/English/Sign keyboards are different from each other. However, the Function keys on the right side play the same roles as follows.

- : Delete all the current texts entered. CLR
- : Delete one letter ahead of the current cursor.

After typing the text based on the combination of keys and functions, you can save all the texts completely by pressing the ENT key. As they save completely, you will be also escaped from the multi input screen. If you are to cancel the text, you can press the **FSC** key on the right top side. By doing so, you can delete all the current text while escaping the input box. PROGRAM NAME SETUP

User can input program pattern name as followings

PATTERN

[:] Save the text indicated up to the current cursor into the ENT internal memory.

3.2.3. Number Input Mode

The screen for number input is shown in the Fig.4. If you press the number 0 to 9 and . keys once, they will be indicated on the cursor position. Whenever you press the (([,)]),

i %, ¥i and + - keys on the left side of the keyboard, they will be indicated in turn. When you press such duplicate keys, the cursor will not move at all while waiting for continuous entry. At that time, if a certain

r (Fig. 4) The screen for number input

period of time (approx. 1 second) passes, the cursor will move automatically to the next position disabling you from continuous entry.

3.2.5. English Input Mode

The screen for English input is shown on the Fig. 6. All the keys except the _____ and ____ keys consist of duplicate keys

TEST	PATTE	1 12, 21	3H1		
ENG	JSH	A B	C D	E F	CLR
CHAN KEYP	SE 40	G H	1 	К	-
M	0 P	Q R	s т	U v	Chit
W U	Y	-	- 2	-	CINI

3.2.6. Sign Input Mode

The screen for sign input is shown on the Fig. 7. All the keys except the key, consist of duplicate keys. Its basic use is tche same as that of the English input mode

3.3. The name of each part on the operating screen

- 1. Current operation status
- 2. Menu button
- 3. Operation screen 2 shift button
- 4. Run/Stop indication
- 5. Control output BAR for current temperature (MV)
- 6. Current temperature PV
- Control output BAR for current humidity (MV)
- 8. Current humidity PV
- 9. Temperature PID Zone No. input box
- 10. Humidity PID Zone No. input box
- i 17, 18 are displayed only in operation.

- 11. Current date/time
- 12. Temperature PV Up/Down indication
- 13. Temperature SV input box
- 14. Humidity PV Up/ Down indication
- 15. Humidity SV input box
- 16. Running time indication
- 17. Temperature A/T button
- 18. Humidity A/T button
- 19. Start button for Fix control
- 20. Stop button for Fix control

(Fig. 9) The 1st running screen of program control

11. Temperature SV Up/Down

12. Start pattern No. input box

14. Start segment No. input box

16. Current operating pattern No.

17. Current operating segment No.

20. Program operation Start button

21. Program operation End button

15. Running time indication

18. Program STEP button

19. Program HOLD button

13. Humidity SV Up/Down indication

indication

- 1. Current operation status
- 2. Menu button
- 3. Operation screen 2 shift button
- 4. Running/Stop indication
- 5. Control output BAR for current temperature (MV)
- 6. Current temperature PV
- Control output BAR for current humidity (MV)
- 8. Current humidity PV
- 9. Operation pattern name
- 10. Current date/time
- i 16~19 are displayed only in operation

The operation screen 1 (Fig. 8, Fig. 9) is the basic screen where you can enter either temperature & humidity setting value (SV) or start pattern/loop No. in the Fix/Program mode. After entering your desired setting value, you can press the **RUN** button to start control.

Attention

After pressing the <u>RUN</u> button, you are unable to press various setting buttons like MENU or input boxes, because they may have a serious effect on system control operations.

(Fig.10) The 2nd running screen of program control

- 1. Current operation status
- 2. Menu button
- 3. Operation screen 3 shift button 1
- 4. Running/Stop indication
- 5. Temperature PID ZONE No.
- 6. Current temperature PV
- 7. Current temperature SV
- 8. MV
- 9. I/S signal status indication
- 10. T/S signal status indication
- 11. D/I signal status indication
- 12. A/S signal status indication
- 13. SEG. running time indication
- 14. Humidity PID ZONE No.
- 15. Current humidity PV
- 16. Current humidity SV

- 17. Current humidity MV
- 18. Temperature/humidity Up/Down
 - section indication
- 19. Temperature/humidity holding section indication
- 20. Temperature/humidity waiting indication
- 21. Running time indication
- 22. Buttons for system error indication
- 23. Current operation pattern/ segment indication (pattern No./segment No.)
- 24. Current pattern repeat No. indication (Current repeat No./Entire repeat count)
- Current operation section / repeat info. Indication Current section repeat No. / Section repeat count

(Fig.11) Screen for graph view

- 1. Current operation status
- 2. Menu button
- 3. Operation screen 1 shift button
- 4. Running/Stop indication
- 5. Upside screen of Y axis
- 6. Temperature & humidity SV, PV indication
- 7. Div time increase of X axis
- 8. Div time decrease of X axis
- 9. X axis time / Div
- 10. Low part screen of Y axis

- 11. Current temperature PV indicatior
- 12. Current temperature MV/SV indicator
 - shift button
- 13. Current temperature MV or SV indication
- 14. Current humidity PV indication
- 15. Current humidity MV or SV indication
- 16. Current humidity MV/SV indicator shift button
- 17. Y axis temperature & humidity unit shift button
- 18. Y axis unit indication
- 19. Graph/Save setting button

3.4. Running of Fix-control

Fix-control is running a temperature and humidity by fixed set value (SV).

3.4.1. Running selection of Fix-control 1.

(Fig.12) The 1st running screen of Fix control (Stop screen)

(Fig.13) The 1st running screen of Fix control (Run screen)

Start running : You can start the fixed running just by entering a temperature & humidity setting value (SV) and pressing the RUN button in the 1st running screen of Fix control(Fig. 12). In this case, the arrow indicator will move to indicate its running status, while the indicator on the right bottom will be changed into the RUN button with its red color.

Stop running : Press the STOP button if you want to stop running. Fix-control or Program control (Fig.12) can be selected from Main Menu, if you press the Stop button in the 1st running screen of Fix control. In the Main Menu, press the Stop button and select Running mode. Fix control will be selected by press the Stop button. Press the Stop button to set an each setting item of the 2nd function set up screen.

Whenever you change the setting value (SV) during its running, the PID ZONE numbers for controlling will change automatically. If you want to use a particular PID ZONE number, you should enter a ZONE number again after entering a setting value. After starting the operation, both T.AT and H.AT buttons will become the temperature and humidity Auto Tuning (A/T) buttons respectively. A/T is available only in the Fix-Running mode. You can execute this A/T by entering its necessary temperature or humidity setting value (SV) and pressing its related button. If you want to stop A/T, you should press its operating button. In other words, you should press the T.AT button for temperature, but press the H.AT button for humidity again. Of course, you can also stop AT process by pressing the STOP button of fix control

T.AT T.AT while stopping the controlling operation. In this case, all the operation values related to A/T will not be saved. A/T can running up to 24 hour, beyond which A/T will stop.

Caution 1.	When it comes to temperature, its PV will be always displayed unless the sensor line is disconnected. However, as far as humidity is concerned, its PV will not be indicated unless a setting value (SV) is entered. If you set the SV to 0 and press the RUN button, you can control the temperature only.
Caution 2.	It is impossible to run A/T for temperature and humidity at the same time. Therefore, it is desirable to run humidity after maintaining a target temperature. The button concerned will flash during Auto tuning.

T.AT	Temperature Auto Tuning button (Flash during running)
H.AT	Humidity Auto Tuning button (Flash during running)

3.4.2. Running selection of Fix-control

Process value and Set value of temperature and humidity is shown basically in the 2nd running stop screen of Fix control. There is shown also for Inner signal(I/S), Time signal(T/S), Digital input signal(D/I), Alarm signal(A/S), and indicate a gradient of initial set value by form of UP/DN and SOAK.

(Fig.14) The 2nd running screen of Fix control (Stop screen)

TE	M	P	12	1)).	PI (D /)	1	HUMII%F	HIPE NO
T, T,	SM	V		51	0,0	00 37	2 %	1	H.SV H.MV	50.0 % 0.00 %
1/S	1	2	3	4	5	6	7	8	PTN:SEG	UP/DN
T/S	1	2	3	4	5	б	7	8	1	SOAK TH
0/1	1	2	3	4	5	ĥ	7	8	FINAPI	WAIT
A/S	1	2	3	4		EF	R	0R	SEG RPT	Run Time
	1000	-		_		1	-	_		FILLER FILLER

(Fig.15) The 2nd running screen of Fix control (Run screen)

3.5. Running of Program control

Program control is control a Process Value (PV) by change of Set Value (SV) according to course of time. For example, it increase current temperature to 30_{1}° for 10 min. and maintain 30_{1}° for 15min., and then increase to 70_{1}° again for 40 min. and maintain the 70_{1}° for 1 hour. Program control is especially using widely in the test equipment for environment like as thermostat and electric furnace.

3.5.1. Selection of Program Control Running

(Fig.16) The 1st running screen of program control(stop screen)

(Fig.17) Main menu for function setup

In order to running with program control, press the **EVEND** button of the top on the1st running screen of program control (Fig.16) and move to the screen for function setting (Fig.17). Move to the screen; Function Setup 1; by press the **EVEND** button, and select the program control as running mode by press the **EVEND** button. After finish setting "FUNCTION SETUP 1 & 2 by press **EVEN** button, and move to; Main Menu; -screen by press **EVEN** button. And then, finish the set for; DATE/TIME RESERVE SET i,f GRAP / LOG SETUP ;,-and move to the Program Set Screen (Fig.18) by **PROGRAM** button to set a program. Set an each item with press the buttons in the Program set screen (Fig.18)

3.5.2. Set of Program Control Pattern

Program setup MEN	JU ESC
PATTERN	PROGRAM
SETUP	NAME SETUP
REPEAT/LINK	PATTERN
SETUP	MANAGE
WAIT/ALARM SSV SETUP	

(Fig.18) Program Set Screen

(Fig.19) Pattern Set Screen

Press the **PATTERN** button in the program set screen (Fig.18) and move to the screen for program pattern set (Fig.19). Establish the set item for each segment of pattern in the screen for program pattern set (Fig.20).

Move to the running stopped screen 1 for program control after input for all, and input a start segment No. in the pattern and program start pattern. And then, program control will be running if you press the RUN button.

(Fig.20) The 1st running screen of program control(Stop screen) (Fig.21) The 1st running screen of program control(Run screen)

Once the program operation starts, STEP and HOLD buttons will appear newly like as running screen 1 for program control (Fig.21). These buttons has function which is related to progress of segment.

Button	Name	Function
STED	Program STEP	Stop the present segment within the current program
SIEP	button	pattern, and start the next segment.
	Program HOLD	Keep running the current segment unlimitedly within
HOLD	button	the current program.

3.6. PID Auto Tuning.

Auto Tuning (hereinafter referred to as A/T) is the automatic setting function in which the controller measures the characteristics of the control system automatically and calculates the optimal PID values accordingly. The A/T method measures and calculates a cycle by producing the ON/OFF control output for the two cycles and generating the limit cycle of controlled targets.

(Fig 22) P.I.D Auto Tuning

You can execute A/T all the time by entering a target setting value (SV) in the fixed control mode, pressing the **RUN** button, and pressing the subsequent either **T.AT** or **H.AT** button. After A/T is finished normally, if the unit is set to automatic PID ZONE reference mode, the resulted PID value will be saved into the appropriate PID ZONE. If this unit is set to manual PID ZONE reference mode, the results PID value will be saved into your designated PID ZONE.

If A/T still runs in 24 hours after A/T execution, A/T operation will come to an end automatically. If you close the A/T operation by force during A/T process, the operating value will not be saved and maintained as a previous setting value.

3.7. Graph display and setting

The graph display screen is the screen that shows the SV and PV of a temperature and humidity in graph. You can change the X and Y axes respectively by pressing the <u>SETUP</u> button (You can set a time of the X axis, Max. and Min. range of the Y axis in the graph set screen, and select also a state of save operation like as <u>ALLON</u>, <u>RUNON</u> <u>FIXON</u>, <u>ProgON</u>, and save period). And you can also display the Y axis for temperature range and humidity range by pressing the <u>EXEMP</u> button.

GRAPH VIEW	MENI.	JN	EXT 🗖
		80.00	TEMPIC
			50.00 al 50.00
			HUMI [%]
		40.00	50.0
		20.00	50.0
			C+++%
Time 00:01:00 /dlv	10	0.00	SETUP

GRAPH VIEW	
1. Why	70.00 60.00 ₹0.00
	40.00 HUMI (%) 50.0 50.0
	20.00 CAX
Time 00:01:00 /dlv.	ICT ILIN SETUP

(Fig.23) Screen for fix control graph display

(Fig.24) Screen for program control graph display

Graph Arri	Data log	setup	230
X.SPAN	V 00	H O1 M OO	s A
Y. Min.	0 [0]	Max.	80 [10]
Data Log	(Date, Tin	ne.T/H:SV	(PV.MV)
ALL ON	RUN ON	FIX ON	Prog ON
L.Period	001 [s		Buf. Init.

(Fig.25) Graph set screen

3.8. Error Indication

The second running screen of program control or fix control (Fifg.26) is indicating an operating state for running.

TE	MF	13	13	PI	D	V DE	ŧ	HUMI[%F	H] PID WOS
T. T.	SV MV	12	5	0.0	穴 00 00	1 ~ %		H.SV H.MV	50.0 % 0.00 %
1/S T/S D/1 A/S	1 2 1 3 1 2 1 2	3	4 4 4	5 5 5	6 6 6	777	8	PTN:SEG PTN RPT SEG RPT	UP/DN SOAK WATT Bun Time

	TEMP B/O	A HU	MI B/C
NO.	D/I Name	V	^
5	ERROR 05		
6	ERROR BB		
7	ERROR 87		
8	ERROR 88		

(Fig.26) The 2nd running screen of program control

(Fig.27) Indication screen for occurrence of error

The indication of errors through sensor disconnection and external D/I is displayed with **ERROR** button on and off in the 2nd running screen of program control (Fig 26). If you press the **ERROR** button, the error occurrence screen will appear. In this case, the error indicator for temperature & humidity disconnection will appear, while D/I(External contact input) no. 1 to 8 will be displayed on the bottom. You can check it by pressing the Up/Down arrow button.

Press the NEXT button to show the operating record indication screen which can check the state of RUN, STOP, Sensor Disconnection and External Contact Input (D/I).

05-04	09:32:44	T. SENSOR BURNOUT
5-04	09:32:44	H. SENSOR BURNOUT
5-04	09:44:32	FIX-RUN START
0-04	09:44:34	RESET BY T. BURNOUT
5-04	09:45:02	FIX-RUN START
5-04	09:45:03	RESET BY T. BURNOUT
5-04	11:33:43	T. SENSOR BURNOUT
5-04	11:35:43	H. SENSOR BURNOUT
5-04	11-38-15	FIX-RUN START
6-04	11:38:17	RESET BY H. BURHOUT

(Fig.28) Operating Rec

4 Displays

Entire displays are mainly composed of three sections which are Working display, Function setting display(Included program installation) and System setting display.

4.1 Operating screen

After you finish to connect & turn on the power, Logo signal & System check display will be shown in a moment, and then Working display will be shown. In that time, according to selecting the initial setting program or Fixed driving method, it will be shown to Program control working display or Fixed control working display.

(Fig. 29)The 1st running screen of program control (Stop screen)

TE	M	PI 5	101 0	P (10 D))/			HUMIT%	EXT ► 3H] PID #11 50.2
T. T	S	VV	E.	50, 0,	00	2 %	11-0	H.SV H.MV	50.0 % 0.00 %
1/S T/S	1	2	34	5	6	7	8	PIN: SEG	UP/DN SOAK
D/1 A/S	1	2	34	5	ĥ	7	8 OR	SEGRET	WAIT Run Time
SEG	lim	112						- 1 s	indiana minite

(Fig. 30)The 1st running stop screen of Fix control (Run screen)

FIX	RI.	IN	1	M)[E			MENU N	EXT 🚺
TE	M	P	13	1	P	D	V DE	3	HUMII%F	H] PID WOS
		4	Ę].	0)()	l		50.2
Ţ,	S	V		5	0,0	00	3	2	H.SV	50.0 %
Τ,	M	V			0.	90	%	2	H.MV	0.00 %
1/5	1	2	3	4	5	6	7	B	PTN: SEG	UP/DN
T/5	1	2	3	4	5	Б	7	8	OTN DOT	SOAK T
0/1	1	2	3	4	5	Б	7	8	FINAFI	WATT
A/S	1	2	3	4		EF	R	OR	SEG RPT	Run Time
SEG	Im	me								

(Fig. 31)The 2nd running screen of program control

GRAPH VIEW	MENU NEXT 🖚
	0.00 TEMPIC) 70.00 50,000 40.00 ♥ 0.00
	40.00 40.00 30.01 \$ 50.0 \$1.01 \$ 50.5
Time 00:01:00 /div.	

(Fig. 33)Program control Graph screen

(Fig. 32)The 2nd running screen of Fix control

GRAPH VIEW	MENU NEXT
	200.0 TEMPIC 162.5 50,00 125.0 € 50,00
	87.50 HUMI(%) 50.00 50.0 12.60 \$ 50.0
Time 00:01:00 /div.	-25.0 62.5 DC -0000 SETUP

(Fig. 34)Fix control Graph screen

33

4.2 Function setting screer

After you push **MENU** button in working display condition, Function setting menu screen is shown. It is composed of 4 buttons. Push each button to set up under an item.

 F2U U1. 86 H2U U1. 86

 RUN SCREEN

 Image: Constraint of the state of the stat

(Fig. 36)Main menu for function Set up

(Fig. 35)The 1st running screen of program control(Stop screen)

4.3 System setting screen

▲ Caution

There is no need for System setting made separately by driver. Because the Basic setting condition of this system is model is set up by the operator, you should be careful especially .

As pushing MENU button in running screen, Main Menu screen is shown. Pushing the character of Main Menu in that time, Password input display is shown. Pushing ENT after inputting (initial value: 0), the display of System setting function menu shows. It is composed of 8 buttons.

USER PWD	_			
H, Limit 9999	7	8	9	CLR
L.Limit 0	4	5	6	-
	1	2	3	CNIT
	+/-	0		ENI

(Fig.37) Password input screen

System setup MEN	NU ESC
A. INPUT	D. INPUT
A.OUTPUT	D.OUTPUT
INNER SIGNAL/ SYS. ALARM	SERIAL COM.
PID ZONE	ETC

(Fig.38) System setting menu screen

5. Function setting

After finishing installation & connection, turn on the power. Logo and system checking are display one after other. And then (Fig.40)the 1st working stop screen of program control is displayed.

(Fig.39)The 1st running screen of program control (Stop screen)

(Fig.40)Main menu for function set up

5.1 Working method setting

5.1.1 Function Setup 1.

Pushing FUNCTION SET UP button in (Fig.40)Function set up menu screen and you can select or set up each setting item in the Function setup 1 screen. Choose Select Program control or Fix control in run mode.

Function setup	1	NEXT ESC
RUN MODE	PROGRAM	FIXBUN
T.SV RATE		[°C/Min]
H.SV RATE		[%/Min]
Fix RUN TIME	Lemen. Hr.	Min
MV TRACKING	ON	OFF

(Fig.41)Function Set up 1 screen

(Fig.42)Function Set up 2 screen

Bun modo	Program	Select in program control						
Runnoue	Fix	Select in fix control						
T.SV	Set it up as	the gradient of temperature variations [i /m] per hour (minute)						
variation	from curren	t temperature to setting temperature in fix control.						
H.SV	Set it up as	the gradient of humidity variations [i /m] per hour (minute)						
variation	from current humidity to setting humidity in fix control.							
Fix run	After running the fix-mode control for the time entered,							
time	the operation will stop automatically.							
MV tracking	Manipulated Variable Tracking The drastic change of setting values will lead abrupt control output. To prevent it, MV tracking runs when set value (SV) changes over ; 5.0 ;							

5.1.2 Function set up 2

After finishing Function setup 1, press **NEXT** button to set up the item in Function set up 2. In case of outage due to a power failure, it runs according to the BOOT RUN on Function Setup 2. (But power recovers within 5 seconds after failure, the BOOT RUN condition is same as before power failure)

Fuzzy Function	At the be It is calle turn on F	ginning of running, MV (Measurement Val d 'Over Shoot' To prevent Over Sheet, pl uzzy function, the rising time may delay or	ue) may exceed SV (Set value). ease use Fuzzy function. If you [•] under shoot may happen.	
	Setting	Program control	Fix control	
	Stop	Stop	Stop	
Boot Run	Cold	Start	Start from same set value	
		from the beginning	as before power failure	
	Hot	Start from	Run Start	
		the segment before power failure		
Веер	Turn on/o	off the buzzer sound to check various input	t and operation.	
Touch PNL	It is used lock, it is	to limit the touch panel input during syste impossible to input except MENU, NEX	m control operating. If select	
Screen P. Down	It is a fur you inpu	nction to turn off power of Back-Light in ord t '0', the backlight turn on all the time.	ler to protect LCD display, If	

5.2 Program Setting

(Fig.41)Press PROGRAM button in Main menu screen, Program set up menu will be shown. It is composed of 5 buttons. Push button to set up each item.

(Fig.43)Main Menu for function Set up

(Fig.44)Program Set up Menu

5.2.1 Pattern setting

setting Setting button in Program set up menu screen, Program pattern set up screen is indicated. Set segment of each pattern in this screen. Program control will run according to the content & sequence of segment designed.

Pattern setup		NEXT	ESC	
PTN 001 V	^	SEG P	Page A	
SEG TEMPEN HUMISV H	tour Min. W	wit T/S	ALARM	
001 25.00 80.0	000 : 01	1 21	1234	
002 25.00 80.0	000 : 01	-1 -1	1234	
003 50.00 60.0 0	000:00	-	1234	
004 50.00 60.0	000 : 01	-1 -1	1234	

Pattern setup	NEXT ESC
	SEG Page
SEG TEMPSV HUMISV Hour Min. 001 25.00 90.0 000 : 01	Wait T/S ALARM
002 25.00 80.0 000 01	1234
003 50.00 60.0 000 : 01	1234
004 50.00 60.0 000 : 01	- - 1 2 3 4

(Fig.45) Program pattern set up screen

(Fig.46) Segment selection screen

Set up each input item (Fig.45) in reference of the diagram as toll owing

Name	Function	Range
Pattern No.	Enter a pattern number to set or select it by pressing	1 200 pottorp
	Up/Down button.	1 ~ 500 pattern
SEG.Page	Press Up/Down button, it moves each 4 segment.	
Temperature SV	Press set up window, set Temperature SV of segment.	-100 ~ 200 ℃
Humidity SV	Press set up window, set Humidity SV of segment	0 ~ 100 %

Hour/Minute		0 hour 0 minute ~	
riour/windle	Setting operation time of segment	255 hour 59 minute	
Wait	Selecting waiting operation function set in waiting operation setting display.	ON/OFF	
T.S.(Time Signal)	Selecting valid time signal in segment		
A 1	Selecting each action among 4 kinds of signal		
Alarm	esigned in pattern signal setting display.	1~4 each On/Off	
	(Fig.48)Pattern signal selection screen		

Pressing SEG number in the left side of (Fig.45), User can Insert/Delete segement in Fig.46. SEG.. Page button is changed to INS, DEL button in that time. Pressing this button, Segment should be inserted or deleted and then the next Segment will be moved.

→ Waiting/Pattern signal selection

Select Waiting, Pattern signal item of Program pattern setting display to execute contents set in Waiting Operation Setting display & Pattern Alarm Setting display (If you press WAIT/ALABM SSV SETUP) button in Program setting display, Waiting Operation Setting display will be indicated.)

(Fig.47)Pattern Alarm selecting screen

5.2.2 Time Signal Set up

Pressing Time Signal(T.S.) in (Fig.45)Program Pattern Setting display, (Fig.48)Time Signal set up display will be shown.

PTN		01	SEG C	01	V	٨
No.	ON	OFF	(ON Delay) TI	ME (OF	(time)	
TS1	ON	OFF	00 h 00 m	100 h	00 m	٨
TS2	ON	OFF	00 h 00 m	00 h	00 m	-
TS3	ON	CFF	00 h 00 m	00 h	[00 m	Page
TS4	ON	OFF	00 b 00 m	00	[00 m	V

Time	: Signal :	setup		ESC
PTN	001	SEG o	02 V	^
No.	ON/OFF	(ON Delay) TIM	E (ON time)	
TS1	ON OFF	100 h 100 m	100 h 100 m	Λ
TS2	ON OFF	00h 00m	00 h 00 -	Denne
TS3	ON CFF	00 h 00 m	00 h 00 m	Page
TS4	ON OFF	00 h 00 m	m , m	V

(Fig.48)Time Signal Set up Display

(Fig.49)Example of Time Signal Set up

Time Signal Set up Mode is divided into 2 types according to mode: SEG On/Off Mode and Time Set up Mode. Time Signal can be set to 8 points per each Segment.

Settina Mode	Function	Setting Range
SEG On/Off Mode	Set the Time Signal in ON, while segment is operating	Each segment
Time	Set the Time Signal in ON, after setting time is delayed	0 ~ 99 hour
	from the beginning of segment.	59 min
(Time Setting	Set the Time Signal in ON, during setting time	0~ 99 hour
Mode)	from segment in ON.	59 min

Time Signal(T.S)	Description	
T.S 1	SEG. 2 ON under 50°C soak status	
T.S 2	SEG. 4 ON under 25°C soak status	
T.S 3	SEG. 6 ON under 75°C soak status	
T.S 4	SEG. 1 and SEG.5 ON under Up section	
T.S 5	SEG. 3 ON under Down section	
T.S 6	SEG. 1 to SEG. 3 ON	
T.S 7	SEG. 4 to SEG. 6 ON	
T.S 8	SEG. 1 to SEG. 6 ON under program control running	

(Fig.48) shows an example of using the T/S in ON/OFF mode. It performs turning on and off the T/S in the desired segment with the name of ON/OFF mode. The ON and OFF buttons are composed separately like (Fig.46). Select by pressing or button, according to the desired Time Signal Operation.

• Example of Setting the Time Signal in TIME Set up mode

Time Signal	Description
· ·····e e.g. · e.	
	When starting the SEG.1, it has T/S ON without a delay and OFF in two hours
T.S 1	(On Time). When starting the SEG.6, T/S ON without a delay and OFF due to
	program ending though On Time is two hours.
	When starting the SEG.1, it has T/S ON after delay (30 minutes) and OFF
T.S 2	in two and a half hour (On Time). When starting the SEG.6, it has T/S ON after
	delay (30 minutes) and OFF in one hour (On Time).

(Fig.51)Example of Setting the Time Signal in TIME Set up mode

Time Signal	Description
TC 1	When starting the SEG.3, it has T/S ON without delay and OFF in four hour (On
1.5 1	Time).
тер	In case of SEG.2, SEG.4 and SEG.6, it is T/S ON without delay and OFF after On
1.5 2	Time.

Caution Time Signal will be OFF once the program ends regardless of setting modes.

5.2.3 Pattern repeat/Connect setting

Pressing Program, Pattern REPEAT/LINK setup button in (Fig.43) Main menu screen, (Fig.52)Pattern repeat/link set up is shown. If you set Current Pattern repeat count to Pattern repeat on the right side of the top and Current Pattern number to connect Pattern, Current pattern will be run in unlimited repeat according to Segment Operation. Program operation executes inputted segment in

PTN	001	v ^		00
No.	S.SEG	E.SEG	REPEAT	
01				٨
02		-	-	-
03				
04			1	V

(Fig.52) Pattern repeat/Link set up

sequence basically, but it comes occasionally that the case of set segment contents in pattern should be repeated & executed. Using Section repeat in that time, reduce Program input as much as possible.You can move among Section repeat setting pages by using the

Name	Function	Range
Pattern	Enter the pattern number to set or select it by pressing the	1 000 Datta
NO.	Up/Down button.	1~300 Pattern
	1 ~ 300 pattern Pattern Repeat Enter the count of entered pattern	
Pattern	number to repeat. When you want to	4 0 000 //
Repeat	have the pattern repeated unlimitedly, you should enter a current	$1 \sim 9,999$ time
	pattern number into the next pattern number below.	
Dattorn	After finishing pattern working, set a connect-working Pattern	
Link	number. If you set to 0, Working will be completed without	0~300 pattern
	connect-Working.	-
	It indicates the serial numbers that users are unable to set.	
NO	It offers total 20 Section repeats per pattern, and it executes	1~20 number
	them sequentially in the order ranging from 1 to 20 number.	

Trange
0 ~ 100 SEC
0~100 SEG
0 0 - 100 SEC
0~100 SEG
0 2EE time
0 ~ 255 time
: -

• The Segment operation sequence by Section repeat setting

If segment in pattern is set from 1 to 8, it operates like below according to Section repeat Setting.

	Section repeat serial	Sectio	on repea	it setting	Segment exerction seguence
	number	Start	End	Repeat	Segment operation sequence
1	1~20	0	0	0	$(1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7)$
2	1	3	6	2	$(1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6)$
					$3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow$
	1	3	6	2	$(1 \rightarrow 2) \rightarrow (3 \rightarrow (4 \rightarrow (5 \rightarrow (6 \rightarrow))))$
3					$3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
	2	4	5	2	
	1	2	3	2	
4		_			
	2	1	4	2	$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$
	1	2	3	2	$\widehat{\mathbb{I}} \rightarrow \widehat{2} \rightarrow \widehat{3}$
5		2		2	$2 \rightarrow 3$
5	2	6	7	2	6 → 7
					$6 \rightarrow 7 \rightarrow 8$
	1	5	7	2	$(1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7)$
б					$\mathbf{G} \rightarrow \mathbf{G} \rightarrow \mathbf{G}$
	2	2	3	2	Ø → Ø
					$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$
	1	6	7	2	
7		0	2	0	$\mathbf{O} \rightarrow \mathbf{O}$
	2	2	3	2	2 → 3
	1	1	8	1	$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$
	2	2	7	1	\rightarrow 8
	3	3	6	1	$\boldsymbol{\textcircled{2}} \rightarrow \boldsymbol{\textcircled{3}} \rightarrow \boldsymbol{\textcircled{4}} \rightarrow \boldsymbol{\textcircled{5}} \rightarrow \boldsymbol{\textcircled{6}} \rightarrow \boldsymbol{\textcircled{7}}$
	4	4	5	1	
8	5	5	5	2	$\mathbf{G} \rightarrow \mathbf{G} \rightarrow \mathbf{G} \rightarrow \mathbf{G}$
					(4) → 6
	6	1	8	2	e a
	7	7	7	2	
					$\mathbf{U} \to \mathbf{G} \to \mathbf{G} \to \mathbf{G} \to \mathbf{G} \to \mathbf{O}$

* 20 times of section repeats are available for one pattern.

5.2.4 Waiting/Alarm start mode setting

Press Program Walt/ALARM button in Main Menu to move Pattern wait Set up screen. Waiting operation can be set by each segment of proper pattern. In case that Waiting operation of Measurement value(MV) comes or fails to come within Waiting range of Set value(SV), wait process of segment during setting Waiting operation time and then go to next segment.(Only if Waiting operation is set to; "0;,>Waiting operation will not work).

Temp. WAIT RANGE	±	[°C]
Humi. WAIT RANGE	±,-	[%]
WAIT TIME	Hr.	1

(Fig.53) Pattern wait set up

Name	Function	Range
Pattern No.	Enter a pattern number to be set or select it by pressing button.	1 ~ 300 pattern
Temp. Wait range	Enter a temperature range (absolute value) necessary for waiting temperature range. If you enter 0, the temperature waiting will be OFF.	0.0 ~ ; 300.0 [;]
Humi. Wait range	Enter a humidity range (absolute value) necessary for waiting humidity range. If you enter 0, the humidity waiting will be OFF.	0.0~; 100.0%
Waiting time	Enter the maximum range of waiting time. If you enter 0 hour0 minute, it will be set to the unlimited waiting time. If you set both temperature and humidity waiting ranges, the system will run under the AND condition. In other words, the waiting mode will be released, only when both ranges come within the waiting range.	0.0 ~ 99 hour 59 minute

(Fig.54) Common waiting operation

(Fig.54) It shows common waiting mode operation. If the PV fails to enter into the waiting range at the point when the SEG.1 to SEG. 2, the system will wait for the PV to enter into the waiting range during the waiting time. According to the (Fig. 15), even if the PV fails to enter into the waiting range, the system will execute SEG. 2 unconditionally (Fig.55)

(Fig.55) Waiting operation release due to the excess of waiting time

45

5.2.5 Pattern Alarm Setting

After you press PROGRAM SETUP button in Main Menu to go to (Fig.43) Wait/Alarm S.SV set up display, pressing NEXT button to enter into (Fig.56) Pattern alarm set up display.

(Fig.56) Pattern alarm set up screen

(Fig.57) Alarm code selection screen

(Fig.56) is the display of alarm to use from 1 to 4 in pattern. You can select the alarm value set in this display separately, according to Pattern alarm from 1 to 4 per segment in (Fig.45) Program pattern setting display. If you press the alarm code input box to set the alarm sources of temperature or humidity and input your desired code, the alarm code window will appear as shown in the right screen (Fig.57). If you select the alarm button by pressing the set to buttons, it will be entered into the code box of (Fig.56) automatically. To release the set code, you should press the alarm button on the right center of (Fig.57).

§ Alarm Type & Code

Code	Alarm Type	Code	Alarm Type	Operation View
1	Upper limit	11	Upper limit	ON
	absolute (Tangent)		absolute	
			(Tangent, Hold)	OFF
2	Lower limit	12	Lower limit	ON
	absolute (Tangent)		absolute	
			(Tangent, Hold)	▲ OFF
3	Upper limit	13	Upper limit	ON ON
	deviation (Tangent)		deviation (Tangent,	
			Hold)	
4	Lower limit	1/	Lower limit	ON ON
-	deviation (Tangent)	14	deviation (Tangent,	
			Hold)	
5	Upper limit	15	Upper limit	
5	deviation(Reciprocal)	15	deviation	
			(Reciprocal, Hold)	
	Lower limit		Lower limit	_ ON ON
6	deviation (Reciprocal)	16	deviation	
			(Reciprocal, Hold)	OFF OFF
	Upper & lower		Upper & lower	ON ON
7	limit deviation	17	limit deviation	
			(Hold)	● OFF △ OFF ●
	Within the range of		Within the	
8	upper & lower	18	range of upper	ON ON
	limit deviations		& lower limit	OFF OFF
			deviations (Hold)	
9	Upper limit	19	Upper limit	ON
	absolute (Reciprocal)		absolute	
			(Reciprocal, Hold)	OFF
10	Lower limit	20	Lower limit	ON
	absolute (Reciprocal)		absolute	4
			(Reciprocal, Hold)	▲ OFF

; :SV ; ª : Alarm

5.2.6 Operation start condition setting

The initial setting value is necessary to ascent or descent by the setting value of 1st segment when you start to work with Program control. Select this the initial setting value between Start setting value(S.SV) and Current measurement value(S.PV). Pressing WATTALARD, NEXT buttons in Program setting menu display, Pattern alarm setting display will be shown. Pressing NEXT button again In this display, it will be shown to (Fig.58) S.PV Working start setting display.

(Fig.58) S.PV Operaiton start setting display

(Fig.59) S.SV Operation start setting display

Name		Function	Range
Pattern No.		Enter the pattern number to set or select it by pressing the button.	1~ 300 pattern
Start	S.SV	Start the operation based on the SV set in the temperature & humidity S.SV below.	
S.SV		Start the operation based on the current	
T. S.	sv	Set to the start SV upon temperature program running.	-100.0 ~ 200.0 [;]
H. S.	SV	Set to the start SV upon humidity program running.	0.0 ~ 100.0 [;]

5.2.7 Program pattern menu setup

PTN No.	PATTERN NAME	V	Λ		
001	TEST PATTEN D	c. %RH3			
002	PTH_NAME 002				
003	PTH_NAME 000				
004	PTN_NAME 004				
005	PTN_NAME 885				

TEST PATTE	EN IC, XR	ю_		_
NUMERIC	7	8	9	CLR
CHANGE KEYPAD	4	5	6	-
() []	1	2	3	
C X	÷	Û	- 12	ENT

(Fig.62) Program pattern name

(Fig.63) Number input screen

(Fig.62) is the display to enter with selecting Working name in current inputted pattern. Pressing PROGRAM, PATTERN buttons in Main Menu go to (Fig.63) Program pattern name set up display. Entering Program title of the desired pattern number by pressing the shown. Enter the desired pattern number with changing Keyboard by pressing CHANGE button.

5.2.8 Pattern/Segment management

(Fig.64) is the display for managing patterns through pattern copy, segment copy and segment initializing. In the left side you should enter the source pattern or segment number used for pattern management. In the right side you should enter the target pattern number of segment

number to be copied. After entering a desired

value, you can copy it by pressing button in arrow.

Pattern Clear button on the left center is used for initializing all the internal segments of the pattern entered into the input box above.

SOURCE PTN. TARGET PTN Pattern NO. Pattern NO. 001 PTN. COPY 001 Pattern Clear Segment NO. Segment NO. 001 - 006 SEG. COPY 001

Pressing macrow, it will be copied to

contents related with every segment in internal pattern. Pressing (Fig.64) Segment

(Fig.64) Pattern/Segment management

management button, it will copy contents of the original start/End segment copy from a copy start segment. It is possible to copy segment into your desired position by inserting different segment numbers of the right copy when copying segment. (Example : the original 1~6 to the copy 7~12)

Caution
 Keep in mind that it is impossible to recover the original contents of the target after copying the pattern/segment. Once you press the
 Pattern Clear button, the original contents of the source cannot be
 recovered again. After copying pattern by using button, you
 should make sure that the related parameter is proper setting. (Repeat,
 Connect, Waiting, Alarm, Start mode, ect)

5.3 Date/Time Reservation Setting

(Fig.65) is display of Date/Time Reservation Setting. After Input current Date/Time by pressing a window of Date/Time input, Press SET button.

(Fig.65) Reservation time setting screen

(Fig.66) The 1st running screen of Fix control

If you begin to work by pressing RUN button during reservation waiting, reservation waiting will be canceled automatically and the operation will start. Likewise, if you start the "RUN/STOP ; peration through Contact input(D.I), reservation waiting will be canceled automatically

5.4 Graph/Save Setting

In the Graph axis setting screen (Fig. 67), the time on the X axis means the time per division, and can be designated as 20 seconds to 24 hours according to its internal setting. The Y axis is designed for setting the upper and lower temperature limits from -20₁ to 200₁, and its humidity is fixed as 0 to 100[%].

Graph X/Y,	Data log	setup	ESC
X.SPAN	V 00	H 01 N 00	5 🔨
Y. Min.	0 [0]	Max.	80 [°C]
Data Log	(Date,Tin	ne.T/H-SV	PV.MV)
ALL ON	RUN ON	FIX:ON	Prog ON
L.Period	001 [5		Buf. Init.

(Fig.67) Graph Setting screen

(Fig.68) Graph display screen

	Division Setting	Entire Screen		Division Setting	Entire Screen
	Time (m/s)	Time (h/m/s)		Time (m/s)	Time (h/m/s)
1	00 / 20	00 / 03 / 20	13	00 / 30	05 / 00
2	01 / 00	00/10/ 00	14	00 / 40	06 / 40
3	02 / 00	00 / 20 / 00	15	00 / 50	08 / 20
4	03 / 00	00 / 30 / 00	16	01 / 00	10 / 00
5	04 / 00	00 / 40 / 00	17	02 / 00	20v00
6	05 / 00	00 / 50 / 00	18	6 03v00	30 / 00
7	06 / 00	01 / 00 / 00	19	04 / 00	40 / 00
8	07 / 00	01 / 10 / 00	20	05 / 00	50 / 00
9	08 / 00	01 / 20 / 00	21	06 / 00	60 / 00
10	09 / 00	01 / 30 / 00	22	2 09 / 00	90 / 00
11	10 / 00	01 / 40 / 00	23	12 / 00	120 / 00
12	20 / 00	01 / 50 / 00	24	24 / 00	240 / 00

Table 3) Time per X axis DIV

As far as the saving operations are concerned, the total 86,400 pieces of information on temperature & humidity (Y/M/D, temperature & humidity SV/PV/MV) under current controlling will be recorded to the internal memory. The saving cycle can be designated as 1 to 360 seconds. Therefore, if the saving cycle is 1 second, it can save for one day. On the other hand, if the saving cycle is 30 seconds, it can save for 30 days.

The optional buttons for saving are shown in the following table.

Button	Name Function	
ALL ON	ALWAYS ON	Save always
RUN ON	RUN ON	Save during controlling only.(Fix/Program)
FIX ON	FIX-RUN ON	Save during fixed-mode controlling only
Prog ON	Program-RUN ON	save during program mode controlling only
Buf.Init Internal Buffer initialize		Delete/Initialize Saved Contents in internal memory

TH300 present USB connection function to send saved data to PC. According to Save Sequence & Save Operation Mode set in (Fig.67) Graph Setting display, Data stored in internal memory become mass difficult to transfer with low-speedy connection (Max. 115,200BPS) interface like RS232, RS422/485. If you send by using USB connection in that time, it is possible to send to PC within a few second.

(Fig.69) is the display of USB Up-loader software presented by J-Thermo CO., LTD. When USB connecter is connected, Device connecting status is

indicated, Connected i in blue and LOG DATA TRANSMIT TO USB button is activated. Pressing button, you can receive every Measure/control value recorded in TH300 through USB.Transferred date is stored in the folder of C:\TH300_DATA i.-Because all saved Data file is in text mode, you can see the content of saved data file with any editor, word-processor or Excel. It is possible to see a graph by using Graph Viewer program presented.

Caution 3.
 The USB Plug & Play function of some PCs may have errors upon PC booting. Therefore, it is necessary to connect USB connector after PC booting. After PC booting, you are free to connect USB connector.

(Fig.70) Graphic viewer

6. System Setting

A Caution

Caution : System set up is a pre-installed basic setting condition so you are requested attention when you change it.

If you push **mean** on operation screen, Main menu screen will be displayed. And if you push "Main Menu", password screen will be displayed (initial value: 0). and then you can enter system setting screen, after pushing **mean** on screen.

(Fig.71) Main menu screen

(Fig.72) System set up menu screen

6.1 Sensor type setting

Our temperature and humidity controller (Model # TH300) support various outputs and inputs so you need to set output and input information before using this controller. On the operation screen, push screen as following,

MENU i Main MENU

A. Input setup 1 PREV NEXT ESC
TEMPERATURE
Sensor type RTD Vpc (Pt100) (0-5V)
Input range -100.00 - 200.00 [안]
DCV Scaling[1]
Temp. Bias 📃 0.00 [°c]
LPF Time 005 [s]

(Fig.73) Temperature sensor setting screen

(Fig.74) Humidity sensor setting screen

Set up according to sensor type. If the sensor type is a DRY^{JU} WET bulb type and each is RTD (Resistance Temperature Detector - Pt100 §), please select **1** If you use electronic humidity sensor (Model # EE99), temperature sensor type will be **1** and humidity sensor type will be **1** (But in case of S.C.R Out terminal will be 250 § and 1% resistance need to be contacted to sensor input terminal.

Regarding sensor input range, you can use initial value. The initial setting for temperature value is -100...200 ; and humidity value is 0...100% R.H. If you use electronic humidity sensor (Model # EE99), please set up input range to 1-5V d.c and contact resistance (250 § 1% below) to the both of input terminals.

If you select DC voltage (V d.c), please enter proper scale value. If you enter 1-5 V d.c and display range is $0\sim100$, please set up scale setting value from 0 to 100.

The sensor bias revises deviation that is caused by many reasons.

LPF (Low Pass Filter) setting When process value is chattering due to inflow of noises through input sensor, user can input propertime.

(Fig.75) Dry Wet bulb sensor correction screen

A. Input setup 4 PREV NEXT ES	С
T. SV range -100.00 - 200.00 [t	5]
H. SV range0.0100.0 [%	6]
Temp. Res. 0.01°C 0.1°C	
Burnout wait time	5]
A/T Button ON OFF	

(Fig.76) Range setting screen

Dry T. Range	Set up Dry / Web temperature range.
Dry Temp.	Displays Dry bulb temperature
Web Temp	Displays Wet bulb temperature (Gauze have to be removed)
Rel. Humidity	Displays relative humidity (% R.H.)
	Press Dry/Wet bulb ADJ and it shows the temperature
	difference between dir bulb and web bulb. Its very important to
D / W Adjust.	correct Dry/Web bulb because relative humidity measurement
	is based on the temperature difference
	between two sensors.
Adjust mode	If you push setting, correction will be started

A Caution Please remove gauze in the web bulb sensor before correction. And also start correction after stabilization of the process value. Please recover gauze after correction.

	In order to prevent users mistake the Temperature
T. SV range	SV range can be restrictive as much as wanted range.
11.0\/	In order to prevent users mistake the humidity
H. SV range	SV range can be restrictive as much as wanted range.
Temp. Res	Temperature process vale and SV can select 0.01 ; or 0.1 $^\circ\!\!\mathbb{C}$
Burn out wait time	Set up delayed action time after detecting sensor loof brake.
A/T Button	It shows or hides Auto Tuning button in operation screen.

6.2 Control output setting

(Fig.77) Temperature control output setting

(Fig.78) Humidity control output setting

Control output for Temperature and Humidity needs to be set individually as following.

	Select and use S.S.R or S.C.R (4-20mA d.c). Select	
T. out type	according to the equipment (Initial value : S.S.R)	
	You can set up when you select S.S.R output. Output	
T. SSR out period	cycle means On/Off working time in the proportional	
	band.(Initial Value : 2 seconds)	
T out direct	Select cooling control (direct movement) or heating	
	control(inverse movement) (Initial Value : Inverse movement)	
T out range	You can control output and selection range is -5%(3.2 mA	
1. Out range	d.c) … 0.5 %(20.8 mA d.c) (Initial Value : 100 %)	

(Fig.79) S.S.R pulse output

It is an example for S.S.R output from 20% to 100% output range. Base on cycles of control output, MV (Manipulated Variable) is changed to Duty.

If you select S.C.R, it shows the relation between MV (Manipulated Variable) and output range.

6.3 Retransmission output setting

Retransmission output can be selected from output set up 3 and output set up 4.

(Fig.81) Temperature retransmission output setting screen. (Fig.82) Humidity retransmission output setting screen.

Temperature retransmission output (Output setup 3)

	Select type of RET (Retransmission output) for temperature. It is used for
T. Source	input in recorder etc. output signal is 4-20 mA dc and select one among PV
	(Process Value), MV (Manipulated Value), SV (Setting Value).
	Scale value against temperature output range will be selected 4-20 mA
T. Range	d.c. But if MV selected, output will be the percentage of setting value
	against 4-20 mA d.c. It means if you select 50 %, output will be 12 mA d.c.
Output Bias	In order to delete deviation value of retransmission output, input current offset.
	In case of sensor loof brake, select between retransmission output current
S.Burnout Output	Sensor loof break output. Select 0.0 mA dc. or 4.0 mA d.c

Humidity retransmission output setting (Output set up 4)

	Select type of RET (Retransmission output) against Humidity. It is used for
H. Source	input in recorder etc. output signal is 4-20 mA dc and select one among PV
	(Process Value), MV (Manipulated Value), SV (Setting Value).
	Scale value against temperature output range will be selected 4 - 20 mA d.c.
H. Range	But if MV selected, output will be the percentage of setting value against
	4 - 20 mA d.c. It means if you select 50 %, output will be 12 mA d.c.
Output Bias	In order to delete deviation value of retransmission output, input current offset.
S.Burnout Out	Sensor loof break output. Select 0.0 mA dc. or 4.0 mA d.c

6.4 Inner Signal and Alarm setting

Time Signal is related with segment and Time but Inner Signal is used for signal output of temperature and humidity. So Inner Signal is not related with segment section.

(Fig.83) Inner Signal setting screen

Setting item	Function	Initial setting
(I/S) Number	Directly input it by pushing Inner Signal number or select it by	
	push button.	
(I/S) Item setting	Select Inner Signal item (Temperature or Humidity)	Temperature
	TSV (Target Set Value): Operate base on target setting value	
(I/S) Type	NSV (Now Set Value): Operate base on current setting value	
setting	P.V1: Operate base on process value of action range 'L' and 'H'.	TSV
	P.V2: Operate base on process value that are related with	
	setting value and deviation	
(I/S)Operation	setting value.	-100200°C
range	Setting temperature and humidity range of Inner Signal	
(I/S) Range direction	Setting application range of Inner Signal	Internal range
(I/S) Delay time	Operate delay time of Inner Signal	_

(Fig.84) Example of Inner Signal setting (NSV)

(Fig.85) Example of Inner Signal setting (TSV)

I/S 8⊢

I/S 1H

I/S 1L

I/S 2H

1/S 2L

I/S 3H

I/S 3L

t (time)

Fig. 84 is an example for Inner Signal setting (NSV). Setting Inner Signal 1~3 & 8 for temperature, internal range, NSV, -> According to change of Set value (SV), Inner Signal turn ON/OFF. Fig. 85 is an example for Inner Signal Setting (TSV) Setting Inner Signal 1~3 & 8 for temperature, Internal range, TSV -> Base on TSV (Target Set Value), Inner Signal turn ON/OFF Fig. 86 is an example for Inner Signal Setting (PV1)Setting Inner Signal 1~3 & 8 for temperature, PV1, Internal range Fig. 87 is an example for Inner Signal setting (PV2) Setting Inner Signal 1~3 & 8 for temperature, PV2

(Fig.86) Example of Inner Signal setting (PV1) (Fig.87) Example of Inner Signal setting (PV2)

60

This is a setting screen for Temperature and Humidity alarm.

If you push System setup on the System set up menu screen, Inner signal set up screen will be displayed. And then, if you push NEXT, System alarm set up screen will be displayed (Fig. 88).

- 1. Establish a standard for alarm setting value among Temperature and Humidity
- 2. If you push alarm code select button, System alarm code setting will be displayed as Fig. 89.
- 3. Push 🔊 👽 button and select proper alarm type as Fig. 88.
- 4. If you want to cancel selected code, please push ALM on the left side.
- 5. And then set, alarm value and Hysteresis.

Alarm code select	ESC
∆:SV ▲ :ALARM SV ∧:H	YS.
1. Process H(D.C) 2. Process L(D.C)	\wedge
	ALM
3.Deviation H(D.C) 4.Deviation L(D.C)	
	\vee

(Fig.88) System alarm setting screen

(Fig.89) System alarm code screen

4 Buttons on system alarm screen are for the operate condition of alarm setting.

Setting item	Description
ALL ON	All ways turn on alarm
RUN ON	Maintain alarm on operation
FIX ON	Maintain alarm on fixed control operation
Prog ON	Maintain alarm on program control operation

6.5 P.I.D Setting

The TH300 has total 16 PID ZONEs. As tollowing four temperature zones and four humidity zones are combined with each other, so you can control temperature and humidity with the optimized PID value. User can change the zone boundary of temperature and humidity, freely.

Temp.Zone Humi.Zone	-100≤Temp.SV≤TZ ,	TZ ₁ < Temp.SV≤TZ ₂	$TZ_2 < Temp.SV \leq TZ_3$	$TZ_3 \prec Temp.SV \leq TZ_4$
0≤Humi.SV≤HZ ₁	ZONE 1	ZONE 2	ZONE 3	ZONE 4
HZ ₁ < Humi.SV≤HZ ₂	ZONE 5	ZONE 6	ZONE 7	ZONE 8
HZ₂< Humi.SV≤HZ₃	ZONE 9	ZONE 10	ZONE 11	ZONE 12
HZ ₃ ≺ Humi.SV≤HZ ₄	ZONE 13	ZONE 14	ZONE 15	ZONE 16

TZ : Temp.Zone, HZ : Humi.Zone

Temp/Hu	mi Pl	D Zor	ne seti	up	ESC
T.AT GAIN	100.0	13	14	15	16
H. AT GAIN	75.0 MI.[%]	9	10	11	12
PID ZONE	50.0	5	6	7	8
	25.0	1	2	3	4
#	-100	0.0	40.0	80.0 [EMP. [°C]	200.0

(Fig.90) Temp. & Humi P.I.D Zone Set up

(Fig.91) Temp. & Humi P.I.D Set up

The **Earch** / **Matrix** buttons on the left side of the PID set up screen (Fig. 90) are automatic & the manual setting. For example, If you push **Earch** and start Auto-turning at 80 ; , Temp. PID value will be applied in the zone 3,7,11 & zone 15. And if you do auto-tuning of Humi. at 75%, Humi. P.I.D value will be applied in the zone 11. In case of Manual mode, Please refer to just SV in the zone set according to the manual.

When you check the value of P.I.D or input it manually, please push zone button which you want, And then move to 'Temp & Humi P.I.D Set up as like Fig. 91. If you want to use only ON/OFF control, you can put_i ≥ 0 i in the P.I.D values. Temp. & Humi. A/T GAIN on the above in the left side is a constant value which is applied to the each item of P.I.D during P.I.D carries out on operation. The setting range is from 0.0 to 10.0 (Initial value : 1.00). It is used that optimize P.I.D numerical value automatically operated after P.I.D Auto-tuning more delicate manually. According to the variation of A/T GAIN value, the variation of Control feature is same with (Fig. 92).

(Fig.92) Variation characteristic control by controlling Auto-tuning GAIN(PV)

Term	Description
GAIN < 1.0	Totally Response speed is faster, but Hunting occurs time by operating Differentiation
	& Integration control which are stronger more than Auto-tuning PID value.
GAIN = 1.0	Use Auto-tuning PID value as it stands. Totally Response speed is slower, but
GAIN > 1.0	Overshoot is decreased time by operating Differentiation & Integration control which are smaller more than Auto-tuning PID value. It grows more stable situation.

Name	Description	
	i /Set a proportional value. Its unit is F/S vs. [%].	
Р	Af the P-Band is wide, the MV output becomes slow. Therefore, it takes longer for	
(Proportional)	the PV to reach the SV. If the P-Band is narrow, the MV becomes sensitive.	
	Therefore, the PV approaches the SV faster, but fails to converge due to	
	continuous hunting.	
	; /Set an integration time. Its unit is the hour [second].	
I (Integral)	; /The P control only is not enough to make the PV and the SV consistent,	
	generating a variation (offset). In this case, the integration reduces the	
	; /Deviation. If the integration time gets too longer, it will converge later. If the	
D	integration time gets shorter, it will hunt continuously or even diverge.	
(Derivative)	; /Set a derivative time. Its unit is the hour [second].	
	; /lt restrains the drastic change in PV by calculating the PV variation every	
	moment and producing the output of its proportional MV.	
HYS.(Hysteresis)	; /Set Hysteresis value when Auto tuning or ON/OFF control.	

6.6 D/I Configuration Setting

It offers the total 8 points for Digital Input (D/I), and receive external input(Active Low). Each D/I input you can enter your desired name based on the combination of Korean/English/Number/Sign (Fig. 98). As for D/I #1~8, you can assign the operation function to three types (RUN/STOP, STEP, HOLD) related to controller operation on the screen of (Fig. 97) D/I setting 1.

D.	Input setup 2 PREV NEXT ESC
D/I	i Status 1 2 3 4 5 6 7 8
NO	D/I Name V A
1	ERROR Ø1
2	ERROR 02
3	ERROR Ø3
4	ERROR 04

(Fig.97) D/I setting 1

(Fig.98) D/I setting 2

User can set up HIGH / LOW operation for these three types. As the LEVEL input, the RUN/STOP and HOLD input should maintain their levels continuously. As the EDGE input, the STEP operation runs once according to its setting once upon $H_{->}L$ or $L_{->}H$. You should continuously enter H and L in order to keep on STEP operation.

1. In case of RUN/STOP, STEP and HOLD operation input, it is impossible
to assign the D/I number redundantly. In addition, if the STEP and HOLD
input come in at the same time, it ignores the STEP input, but handles the
HOLD input only.
· ·

2. External D. I always displays a screen & it is taken in the interior according to the situation of input irrespective of control action (Running or Stop).

Name	Function
RUN/STOP	Start or end the assigned D/l input signal according to the operation mode (H/L) set.
(LEVEL Input)	
OTED	In case of running in program control mode, perform the STEP operation (go to
(EDGE Input)	the next SEG. by force) for the assigned D/I input signal according to the
	operation mode (H/L) set.
HOLD	In case of running in program control mode, perform the HOLD operation (hold the current SEG. operation unlimitedly regardless of set time) for the
X F-7	assigned D/I input signal according to the operation mode

The D/I input often indicates external errors, so it is sometimes necessary to stop the system control not with normal RUN/STOP but with D/I input. At that time, the D/I number assigned to operation out of D/I #1 to 8 turns into gray and does not run. As for the rest of D/I numbers except the assigned numbers, it is possible to set them in the D/I setting 3 screen (Fig. 99).

D. Input setup 3	PREV NEXT ESC
D/I Input state	ALL ON RUN ON
Name Act W.Time	Name Act W.Time
D/I 1 RST 🔜 s	D/I 5 <mark>RST 🛄</mark> s
D/I 2 RST 🔄 s	D/I 6 📧 🗔 s
D/I 3 RST 📴 s	D/I 7 RST 📴 s
D/I 4 RST s	D/I 8 <mark>RST 🔤</mark> s

A Caution

(Fig.99) System reset setting

Name	Function
	In case of D/I input, it is the
	button for setting the system
RST	RESET (End). Only if you
	press this button, the waiting
	time becomes valid.
	It resets (end) the system in a
Waiting time	waiting time
(sec)	while the system RESET
	button is pressed.

6.7 D/O Configuration Setting

The D/O configuration setting refers to the screen for assigning the various signals within the system to RELAY output and O/D output. Here, the signals assigned and connected are displayed through the actual terminal. The D/O assignment is allowed to be redundant except special cases, so it is necessary to assign and enter the RELAY and O/C carefully. The D/O configuration setting 1, 2 (Fig. 100, 101) refers to the screen that assigns Inner Signal and Time Signal to RELAY output and O/C output respectively.

(Fig. 100) DO Configuration Setting 1(Inner Signal)

(Fig.101) DO Configuration Setting 2(Time Signal)

D. Output setu	D 4 PREV	NEXTLES
Name	Relay 0/C	Value
Temp. UP		٩] [٩
Temp. SOAK]m
Temp. DOWN		[૧
Humi. UP		[;
Humi. SOAK]m
Humi. DOWN][9

(Fig.102) DO Configuration Setting 3

(Fig.103) DO Configuration Setting 4

The D/O configuration setting 3 [Fig. 102] refers to the screen for assigning the screen-displayed functions to RELAY output and O/C output. In the alarm #1 to 4,both system and pattern alarms are used together. (System alarm #n and pattern alarm #n run in logical OR.)

Name	Function
Alarm (#1~#4)	System and pattern alarms. Assign the #1~#4 output
Sensor Disconnection	Output assignment upon sensor disconnection
T.RUN	Output assignment upon temperature control
H.RUN	Output assignment upon humidity control
RUN/STOP	Output assignment under RUN
WAIT	Output assignment for WAIT operation
HOLD	Output assignment for HOLD operation

DO Configuration Setting 4(Fig.103) is used when each setting value(SV) of Temp. & Humi. In the section of temperature & humidity Up/Hold/Down. Each setting input value of Set Item operates like (Fig. 104).

(Fig.104) Output by temperature Up/Hold/Down setting

Setting Item	Description
Temp. & Humi. Up section	Input the minus value of Temp. & Humi. in the target of setting value
Temp. & Humi. Down section	Input the plus value of Temp. & Humi. in the target of setting value
Temp. & Humi. Hold section	Input the holding time of Relay or O/C output with in segment time

(Fig.104) shows an example of displaying either Relay or O/C output corresponding to the temperature Up/Hold/Down setting of temperature and humidity SV in the program control mode. In case of adjusting the Up setting temperature, Hold setting temperature and Down setting temperature to -10 $_{\rm i}$, 2 minute and 20 $_{\rm i}$ respectively, it indicates the timing ON with the assigned Relay or O/C output.

<u>Name</u>	Relay 0,	/C Set	time
D/I ERROR		-	se
Program end		-	se
Delayed Sig. 1		-	lse
Delayed Sig. 2	2	-	mi

(Fig.105) DO Configuration Setting 5

Item	Description
	In case of D/I input, its output becomes ON for a setting time. If the RUN/STOP,
D/I ERROR [Min]	STEP and HOLD function input is set, its D/I will be excluded.
PROG. End [Min]	Once the program control ends, its output becomes ON for a setting time.
Delay signal 1 [sec]	After the I/S #1 is displayed, its output becomes ON after a delay
Delay signal i [sec]	[second] for a setting time.
Delay size al O (a sal	After the I/S #1 is displayed, its output becomes ON after a delay
Delay signal 2 [sec]	[minute] for a setting time. (However, the delay signal 2 is displayed
	only if the delay signal 1 becomes ON.)

6.8 Communication Setting

Serial setup (RS-232) NEXT ESC				
\vee	PCLINK	\wedge		
\vee	115200	\wedge		
\vee	NONE	\wedge		
\vee	1	\wedge		
\vee	8	\wedge		
\vee	001	\wedge		
\vee	0000	\wedge		
	-232)	-232) NEXT V PCLINK V 115200 V NONE V 1 V 1 V 8 V 001 V 00000		

Serial setup (RS	6-485)	NEXT	ESC
Protocol	\vee	PCLINK	Λ
Baud rate	\vee	115200	Α
Parity bit	\vee	NONE	Λ
Stop bit	\vee	1	\wedge
Data Length	\vee	8	Α
M. Address	\vee	001	Λ
Response t.	\vee	0000	\wedge

(Fig.106) Communication Parameter Setting (RS232)

(Fig.107) Communication Protocol (RS422/485)

The communication setting refers to the screen for setting either RS232 or RS422/485 parameters to communicate with the device that supports PC or other serials. You can change it with the Up/Down arrow buttons, and can enter the local device number and response time by selecting the input box on your own. Because RS232C/485 communication supports 4 lines (RX+, RX-, TX+. TX-) in hardware and the type of Half-Duplex in software, if you want high speed communication, you should connect into 4 lines. In other case, if you want a simple connection, you can use 2 lines by connecting RX+ with TX+ & do RX- with TX-. If you want a simple connection by connecting 4 lines, you can use 2 lines by connecting RX+ with TX+.

Name	Function	Range
Communication	Set the communication protocol. The protocol runs	PCLINK /
protocol	according to the J-Thermo designed format.	PCLINK+CRC
Communication speed (BPS)	Set the communication speed (BPS). You can select one out of 600/1200/2400/4800/9600/19200/38400 /57600/115200.	1,200 ~ 115,200
Parity bit	Set the parity bit.	NONE / EVEN / ODD
Stop bit	Set the stop bit.	1 / 2
Date length	Set the data length.	5/6/7/8
Local device No.	Set the device number to be used in the system. It is used as its own device number when forming the serial network.	1 ~ 999
Response time [ms]	Select the inter-Byte delay time when sending data. Used when the target equipment to receive runs at a low speed.	0 ~ 1,000 (100 us)

6.9 Other Setting

Password 0000 User information J THERMO - TH380 V1. 84 PROGRAM TEMP/HUMI CONTROLLER		
User information J THERMO - TH300 V1.04 PROGRAM TEMP/HUMI CONTROLLER		
J THERMO - TH300 V1.04 PROGRAM TEMP/HUMI CONTROLLER		
PROGRAM TEMP/HUMI CONTROLLER		
http://www.accutherm.com.tw		

Name	Function
Language	Select system language. It supports Chinese and English.
Password	Change system password. You should enter your password in the unit of four
change	numbers and do so twice for confirmation.
User	Enter the user information to indicate upon the initial system activation. You can
information	enter 29 letters of English/Number/Sign or 14 letters of Korean on one line.

7. Simple Example

J-Thermo Temperature Humidity Controller (Model: TH300) is consisted of Operation screen, Operation Setting screen, System Setting screen. You can select structural elements in the System Setting.

System installation company such as environment test chamber manufacturer etc already finished the system setting when they taking it's product out of warehouse. So users do not have to do system setting additionally. Users can set up humidity-temperature simply through Operation Setting.

7.1 Input / Output Setting

(Fig.109) Temperature sensor setting screen

(Fig.110) Humidity sensor setting screen

7.1.1 Sensor Input Setting

Setting Item	Explanation
	Set up according to input sensor type. If sensor type is a dry or web bulb
Sonsor Typo	respectively and RTD (Pt 100 $_{ m i}$) type, select RTD. If you use electronic
Sensor Type	humidity sensor (Our Model EE99), you should set up temperature sensor as
	R.T.D and humidity sensor as V d.c
	Set up input range of the sensor(s), Generally you can use initial value and
Innut Dongo	initial value of temperature is -100200 $_{\rm i}$, humidity is 0100% R.H. If you use
Input Range	electronic humidity sensor (Our model EE99), after setting up input range as 1-
	5V, connect resistance (250 ; below 1%) into two humidity sensor input
	terminals.
Scaling	When selecting V d.c, set up suitable scale. In case of 1~5V input and display
Setting	range: 0~100, set up scaling setting as 0~100.
Sensor	Sensor deviation corrects the deviation of sensor which is caused by several
Deviation	reasons.
	Low Pass Filter selects suitable time when processed value is chattering due to
	inflowing of noise through input sensor line.

7.1.2 Correct Dry/Web bulb sensor

Setting	Explanation
Dry Bulb Temp. Range	Set up dry/web bulb temperature range.
Dry Bulb Temp.	Displays temperature of dry bulb temp.
Wet Bulb Temp.	Displays temperature of wet bulb temp.(removal gauze)
Relative humidity	Displays relative humidity (% R.H.)
	Press Dry/Wet Bulb ADJ and it shows the temperature difference
Correction of Dry/Wet	between dry bulb & wet bulb. It's very important to correct Dry/Wet
Bulb	Bulb because relative humidity measurement is based on the
	temp. difference between two sensors.
Correction Mode	Correction will be performed when pressing it.

Caution

tion Before correction, please remove gauze in the wet bulb sensor and put into correction mode when measurement value of dry/wet bulb is stabilized.

A. Input setup 3	PREV	NEXT
Dry T. Range	0.00 -	100.00 [°c]
Dry Temp.	50.00 [%]
Wet Temp.	35.04 [%] D/W ADJ.
Rel. Humidity	37.5 [9	6]
D/WAdjust	0.00 [%] ADJ. INIT.
Adjust Mode	ΟN	OFF

(Fig.111) Dry AND Wet bulb sensor correction screen

 A. Input setup 4
 PREV
 NEXT
 ESC

 T. SV range
 -100.00
 - 200.00
 %

 H. SV range
 0.0
 - 100.00
 %

 Temp. Res.
 0.01°C
 0.1°C

 Burnout wait time
 002
 [s]

 A/T Button
 O N
 OFF

(Fig.112) Range setting screen

7.1.3 Range Setting

Temp. SV Range	In order to prevent user's input setting mistake, Input temp.range
Humidity SV Range	when restricting temp. SV within its desired range.
Tomp resolution	In order to prevent user's input setting mistake, Input humidity
remp. resolution	range when restricting humidity. SV within its desired range.
Waiting time	Select Temp. process value and SV as 0.01 $_{\rm i}$ $$ or 0.1 $_{\rm i}$.
in Loof Brake	Set up delayed action time after detecting sensor loof brake.
Display A/T button	It shows or hides Auto Tuning button in Operation Screen.

7.2 Output Setting

(Fig.113) Control output setting

7.2.1 Control Output Setting

Type of Temp.	Output Select and use S.S.R or S.C.R (4-20mA d.c). Select according to
Output	equipment. (Initial Value : S.S.R)
Output cycle	RYou can set up when you select S.S.R output. Output cycle means
of Temp.S.S.R	On/Off working time in the proportional band.(Initial Value : 2 seconds)
Direction of	Select cooling control (direct movement) or heating control(inverse
Temp.output	movement) (Initial Value : Inverse movement)
Range of	You can control output and selection range : -5%(3.2mA d.c)
Temp. output	0.5%(20.8mA d.c) (Initial Value : 100%)
Temp. output	It is a Constant Value applied to each performance when P.I.D computed.
A/T GAIN	Selection range is 0.0~10.0 (Initial Value : 1.00)

A. Output setup 3 PREV NEXT ESC

T. Range -100.00 - 200.00 [6]

(Fig.114) Retransmission output setting

0.0mA 4.0mA

MV

SV

TEMP. REMOTE OUTPUT

Output Bias 0.00 [mA]

T. Source PV

S. Burnout Output

7.2.2 Retransmission Output Setting

Temp. output Type		Select type of RET(Retransmission output) against temperature. It is used
		as input in the recorder etc. output signal is 4-20mA dc and select one
		among PV(Process Value), MV(Manipulated Value), SV(Setting Value).
	Temp output	Scale value against temp. output range will be selected 4-20mA d.c. But if
	Range	MV selected, output will be the percentage of setting value against 4-
	0	20mA d.c. It means if you select 50%, output will be 12mA d.c.
	Temp. output Deviation	In order to delete deviation value of retransmission
Sensor Loof		output, input current offset. In case of sensor loof brake, select between
	Brake Output	retransmission output current between 0.0mA d.c and 4.0mA d.c

i Humidity setting method is the same as temperature setting method

7.3 Inner Signal Setting

(Fig.115) Inner signal setting screen

(Fig.116) DO Configuration Allocation screen

When controlling refrigerator and dehumidifier separately by external switch, it can be used generally with input-output setting only. But in case it needs to control (On/Off) refrigerator & dehumidifier under desired temperature and humidity, it convenient to use Inner Signal. Please refer to the below example, select setting and use it.

(Example 1) Control refrigerator & dehumidifier automatically

Inner	Signal	Signal Type &	Delayed	Output
Signal No.	Subject :	Range	Time	Allocation(D.O)
I/S No.1	Temperature	Type : TSV	1 minute	Connect refrigerator
	Range :-100~30;	Direction : Within Range		to 5th Relay
I/S No.2	Subject : Humidity	Type : TSV	10 seconds	Connect dehumidifier
	Range : 0~70%	Direction : Within Range		to 6th Relay

(Example 2) Control refrigerator 1,2 & dehumidifier automatically (Use I/S 1~3)

Inner	Signal	Signal Type &	Delayed	Output
Signal No.	Subject :	Range	Time	Allocation(D.O)
I/S No.1	Temperature	Type : TSV	1 minute	Connect 1st refrigerator
	Range :-100~30;	Direction : Within Range		to 5th Relay
I/S No.2	Subject : humidity	Type : TSV	10 seconds	Connect dehumidifier
	Range : 0~70%	Direction : Within Range		to 6th Relay
I/S No.2	Subject : Temperature	Type : TSV	5 seconds	Connect 2nd refrigerator
	Range :-100~50;	Direction : Within Range		to 7th Relay

A Caution You have to select temperature range of refrigerator according to its specification. If you set up too high temperature, it may cause malfunction of refrigerator.

7.4 Fix Control

7.4.1 Select how to operate

In order to operate Fix Control, firstly select operating method as fix control. Press MENU button on the operation screen and move to main menu screen. Press Function set up and it moves to Function Set up 1 screen. On this screen, press FIXEUN button and select fix control. And then, press ESC button two times and move to operation screen 1 in the fix control.

Function setup T NEXT ESC
RUN MODE PROGRAM FIXRUN
T.SV RATE [C/Min]
H.SV RATE [%/Min]
Fix RUN TIME Hr. Min.
MV TRACKING ON OFF

(Fig.117) Function Set up menu screen

(Fig.118) Function Set up 1 screen

NEXT 🔲 🖚

T.SV

50.00

50.0

Run Time

T.AT HAT RUN STOP

(Fig. 120) The 1st running screen of Fix control

(run screen)

FIXRUN MODE

. PID 07 H. PID 07

2005-11-17 15:48:33

7.4.2. Temperature & Humidity Control Value Setting

Press temp. & humidity setting and set up desired setting value. (After set up number, please press ENT button in order to finish setting finally.) Press ESC button and it will be back to the 1st Operation Stop Screen of Fix Control (Fig.119)

(Fig.119) The 1st running screen of Fix control (stop screen)

7.4.3 Operate and STOP of Fix Control

In the 1st running screen of Fix control(stop screen) (Fig.119), you can check its operation by pressing **FUN** button. Press **YES** button leads it to start operation. If you press **STOP** button in the (Fig. 120), operation will be stopped when pressing **YES** button in the displayed processing verification screen.

7.4.4 Start Auto Tuning

Ithough it starts fix control operation according to usersí setting value, if you do not perform Auto Tuning, P.I.D control will be applied in accordance with its initial value

at the delivery of goods. Therefore it will be better to perform Auto Tuning in order to get good control performance. To star Auto Tuning, press Auto Tuning button at the bottom of (Fig. 120). When button flickering, it shows that Auto Tuning is being performed. After Auto Tuning finished, Auto Tuning values will be set up automatically and it stops flickering. Same as temperature Auto Tuning , perform auto tuning of humidity by pressing button.

7.5 Program Control

7.5.1 Selection of Program Control

Firstly select operation method as a program control in order to perform program control. Press well button under the status of operation screen and move to Main Menu screen. After pressing well button, it moves to Function set up 1 screen. On this screen, press program button and select program control. And then, press so button one time and move to Main Menu screen.

In the function setting main screen (Fig. 121), press PROGRAM and it shows PROGRAM set up menu screen like (Fig. 123) and it is consisted of 5 buttons. Press each button and select setting respectively.

(Fig.121) Main Menu screen

Function setup 1		NEXT
RUN MODE	PROGRAM	FIXRUN
T.SV RATE [[°C/Min]
h.sv rate [[%/Min]
Fix RUN TIME	Hr.	Min.
MV TRACKING	ΟN	OFF

(Fig.122) Function Set up 1 screen

7. 5. 2 Pattern Setting

Press PATTERN button in the program setting menu screen, it displays program pattern setting scree (Fig.124). Under this screen, select number 1 pattern by pressing pattern number setting window. Press window of temp.setting value, humidity setting value, operating time and then set up relevant segments.

Pattern setup	NEXT	ESC
	SEG. P	age
NO. 001 V /	\vee	\land
SEG TEMP.SV HUMI.SV Hour Min. #	Vait T/S	ALARM
001 25.00 80.0 000 : 01		1234
002 25.00 80.0 000:01		1234
003 50.00 60.0 000:01		1234
004 50.00 60.0 000 : 01		1234

(Fig.123) Program Set up menu screen

(Fig.124) Program pattern Set up screen

Explanation of Program Pattern Setting Screen

Operating Seg.	Contents of setting	Remark
SEG.No.001	Under the Temp 25 ; , Humidity 80% set up temp. & humidity seament for one minute.	
SEG.No.002	Under the Temp 25 ; , Humidity 80% set up temp. & humidity maintenance segment for one minute.	Consider
SEG.No.003	Under the Temp 50 $_{\rm i}$, Humidity 60%, temp. rise & humidity fall for one minute.	pattern as ne
SEG.No.004	Under the Temp 50 $_{\rm i}$, Humidity 60%, temp. rise & humidity fall for one minute.	infinitely
SEG.No.005	Under the Temp 75 $_{\rm i}$, Humidity 40% set up temp rise & humidity fall segment for one minute.	
SEG.No.006	Under the Temp 75 $_{\rm i}$, Humidity 40% set up temp. & humidity maintenance segment for one minute.	

Explanation of Program Pattern Setting Screen

Setting	Explanation	Range
Pattern No.	Input pattern no. directly or select it by using with button	1300 pattern
SEC page	Press Segment Page Shifting button() and it moves	
SLO.page	to 4 segment per each shifting	
Tomp SV	Press setting screen and set up setting value of temperature	-100 200 -
Temp. Sv	of the segment.	-100200
Humidity	Press setting screen and set up setting value of humidity of	0 1000 %
SV	the segment.	01000 //
Time	Set up operation time of the segment	0255hours and 59minutes
Standby	Select function of Standby Operation which was set up in the	
Stanuby	Standby Operation Setting Screen.	UN/OFF
T.S	Select Time Signal which works at the segment	
Dattorn	Among 4 Alarms which was set up in the Patter Alarm Setting	1 A respectively
Alarm	Screen, select operation respectively. Pattern Alarm	
Alarm	Selection Screen (Fig. 47)	UN/OFF

7.5.3. Pattern Setting

In the picture of Pattern Repeat/Connection Setting screen (Fig. 125), set up connection pattern as 1 (its own number). In the Program Control 1st Operation Stop screen (Fig. 126), please input pattern no. & segment no. respectively into the Program Start Pattern & Start Segment Setting Screen in the pattern. After pressing Revealed button, it starts operation of program control. In order to stop Program Control, press STOP button on the right-bottom side of Program Control 1st Operation Stop screen. (Fig. 127). In addition, operation screens of Program Control are as follows: (Fig. 127), (Fig. 128), (Fig. 129).

PTN 001 V A REPEAT 001 No. 0.5.SEG E.SEG REPEAT 01 A 02
No. S.SEG E.SEG REPEAT 01 ^ 02
01 A 02
02
03
04 V

(Fig.125) Pattern repeat / Link Set up screen

(Fig.127) The 1st running screen of program control(run screen)

(Fig.126) The 1st running screen of program control(stop screen)

PROGRAM MODE	MENU NEXT 🔶
TEMP [°C] PID # 07	HUMI[%RH] PID # 07
47.46	49.4
T.SV 48.85 ℃ T.MV 16.26 %	H. SV 38.7 % H.MV 0.00 %
I/S 1 2 3 4 5 6 7 8	PTN : SEG UP/DN 🛧 🕹
T/S 1 2 3 4 5 6 7 8	
D/I 1 2 3 4 5 6 7 8	001/001 WAIT
A/S 1 2 3 4 ERROR	SEG RPT 000 / 000 Run Time

(Fig.128) The 2nd running screen of program control

(Fig.129) Graph display screen

8. Specification

8.1 Input

	Dry ; /Humidity sensor	RTD (resistance temperature detector (Pt 100 § , DIN 43760)
	Digital Temperature	Temperature sensor: RTD (Pt 100 §)
Input	; / Humidity sensor	Humidity sensor: Director current (4 - 20 mA d.c)
(EE99)		Input resister around 1 §
	Sampling cycle	500 mm
Range	Temperature	-100,00 ~ 500.00 i
	Humidity	0.0 ~ 100.0 % R.H
Accuracy	Temperature	\pm 0.2 % of Full Scale
Accuracy	Humidity	± 2 % of Full Scale
Contact input 1a 4point		

8.2 Output

		ON : 24 V d.c pulse voltage, OFF : Max. 0.1 V d.c /
Control Output	SSR	Pulse voltage (load resistance min 800 Ω)
		cycle time : 1 ~ 1000 second
	SCR	4-20 mA d.c or 1-5 V d.c (Below 800 ; load resistance)
	5.0.N	Output limit: -5.0 ~ 105.0%
	Temperature	4 - 20 mA d.c(load resistance min Max. 600 Ω) PV,
I ransmission Output	Humidity	PV/MV/SV (Internal selection)
	Accuracy	0.025 % of Full Scale (resolution: Around 4,000)
	Renewal Time	500 ms
Digital	Contact output	8 contacts (1a x 8 contacts) / N.O : 30 V d.c 5 A,
Output		
Output	Transistor	4 contacts (open collector output) 24 V d.c 300 mA

8.3 Power supply

Power Supply Voltage	100 ~ 240 V a.c (Change rate of voltage ; 10	%)
Frequency	50 ~ 60 Hz	
Power Consumption	Max. 20 W below	
Insulation	Between primary terminal and secondary terminal	500 V d.c
Resistance	Between Primary , Secondary terminal and ground	10 MΩ min
Dielectric	Between primary terminal and secondary terminal	2500 V a.c
Strength	Between Primary, Secondary terminal and ground	50 -60 Hz
Power supply for Sensor	24 V d.c 10 W Max.	

8.4 Operation Environment

	Consecutive Vibration	Vibration width : Below 1.2 mm (5 ~ 14 Hz)
Setting	Consecutive Vibration	Below 4.9 m/ s ² (4 ~ 150 Hz)
surroundings	Short time Vibration	Below 14.7 m/ s ² 15 sec. (each 3 direction)
	Impact	Below 147 m/ s ² 11 ms (each 6 direction and 3 times)
Conditions for	Temperature	0~50 i
Normal	Humidity	20~90 % R.H (No icing)
Operation	Magnetic Range	Below 400 AT/m
	Warming-up Time	More than 10 minutes
Effect of	R.T.D	Below \pm 0.02 ; /;
Temperature in		
the urrounding	Analogue Output	Below ± 0.02% / F.S / ;
environment		

8.5 Transportation and Storage conditions

Temperature	-25 ~ 70 ;
Humidity	5 ~ 95 % R.H (No icing)
Impact	After packing, fall from less than 1m

8.6 Function

Screen		3.7 Inch Color STN-LCD Touch screen
Bias		Temperature: -100.00 ~ 100.00 (;)
		Humidity: -100.0 ~ 100.0 (% R.H.)
Scaling		When turn on power, free scaling set up
LPF		2 ~ 180 sec.
Pattern		300 patterns
Segment		6,000 segments (100 segments are available in each pattern)
PID Group		Temperature 16 zone + Humidity 16 zone
Auto Tuning		According to SV, AT is operating
Proportional Band (P)		$0.00 \sim 100.00(\%)$ (When proportional band is 0.00, ON/OFF control)
Integral Time (I)		0.0 ~ 6,000 sec (0.00 OFF, I.D Time 0.00 -> P control)
Derivative Time		0.0 ~ 6,000 sec (0.00 OFF, I.D Time 0.00 -> P control)
ON/OFF Control		Proportional Band (P) is 0
Direct/Reverse action		Select Direct or Reverse action in control output
ON/OFF Hystersis		0.1 ~ 300.0 (;) (In case of Humidity, Temperature of Humidity
		or conversion value)
Fuzzy		Select ON/OFF
Retransmission		4-20 mA d.c 2 points (Temperature, Humidity)
output		Select PV/MV/SV
Alarm		System alarm 8 points, 8 points for each pattern
Alarm type		High-Low / Low deviation alarm etc 20 types of alarms
Alarm	Process alarm	Temperature:-100.00 ~ 200.00 (;), Humidity: 0.0 ~ 100.0 (%)
setting	Deviation alarm	Temperature:-300.00 ~ 300.00 (;), Humidity: -100.0 ~ 100.0 (%)
Hysteresis		0.1 ~ 100.0(%)
Memory for		Internal Flash or SDRAM memory, Temperature-Humidity each
interruption	Memory type	86,400 point
of electric	Memory	Program information & SV backup and restoration,
power	function	Temperature-Humidity setting, PV save